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Abstract

The reaction of cyclic oximes with divinyl sulfone afforded bridgehead heterobicyclic spiro
compounds in good yields. The formation of diastereomerically single systems involved conjugate
addition of oxime onto the diene sulfone to give transient N-alkenylnitrones that then underwent

subsequent intramolecular dipolar cycloaddition reaction. The diastereoselectivity of the process was
predicted by MOPAC AMI1 calculations.

Introduction

Tandem reactions have emerged in recent years as a powerful means for their operational
simplicity and frequently observed selectivity, providing an impetus momentum in organic synthesis
(1). Prominents in this field are Michael initiated reactions, followed by a facial intramolecular
cycloaddition (2), which has a great deal of importance specially for preparing highly functionalized
nitrogen heterocycles (3). In addition, oximino dienophiles such as oximes or oxime ethers are of
considerable interest because of their potential values in natural product synthesis (4). Recently a
number of groups have developed a good number of methods for the generation of N-alkenylnitrones
involving mainly an oxime interacted with an activated ®-bond (5). Its basic sequence was first
examined by Ochiai and his co-workers in 1967 (6) and which have been nicely exploited by Padwa
(7), Grigg (8), Hassner (9) and others (10,11), over the past several years.

As a part of our ongoing interest in nitrone cycloaddition chemistry (12), we thought that its
worthwhile to investigate the scope of quantitatively functionalized N-alkenyl nitrone cycloaddition

and to isolate the resulting selectively fashioned bridgehead heterobicyclic spiro compounds. This
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report out lines our successful achievement of this target.
Results and Discussion
The chiral N-linked alkenylnitrones were generated in situ from the reactions of chiral oximes
such as (-)-menthone oxime, (+)-camphor oxime. epiandrosterone oxime with divinyl sulfone in
boiling toluene and cyclized in the same conditions to afford diastereomerically pure bridgehead
heterabicyclic spiro compounds 3a-¢(13) in good yields (Scheme 1, Table 1). The structural
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Scheme 1

Table 1. Diastereoselective synthesis of bridgehead type
compounds 3.

Product Oximes Yield [a]p2® de?
(%) c=1.0CHCl; (%)
iy e 80 -66.032 >96 b
8)?5%_ E-Z);ljb_ 74 +90.725°¢ >06 b
(3¢ (rlc 67 -0.6934 >96 b

2The de values were determined by THNMR

spectroscopy (Bruker DRX 400MHz spectrometer).
5in 'TH NMR spectrum there were no peaks

corresponding to the other isomers.
¢ Measured at 27°C. ¢The data were not determined.

assignments of all the bridgehead systems were ascertained by IR, 'H & ""C-NMR, DEPT, HMQC
and HRMS. These informations were further confirmed by a single crystal X-ray analysis (Figure

1)(14). Here its clear that the orientation of substituents, specially the presence and the nature of
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Figure 1. ORTEP drawing of (-)-3a
substituents located at a-to nitrone function and the geometry of the parent cyclic system can

effectively control the regiochemistry, as well as the stereochemistry of the cycloaddition process.
We are pleased to observe the formation of desired cycloadducts under one-pot condition by adapting
the procedure of Frederickson et al (11) with slight modifications. In addition the transition energy
calculated by AM1

&

TS-2(exo-re) AHf = -24.60 kcal / mol

Figure 2. Transition state(TS) energies calculated by MOPAC AM1
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is consistent with the observed experimental results. Accordingly the heat of formation of endo-si
(TS-1, AHf -31.38 kcal/mol) is less by 6.78 kcal/mol than that of exo-re (TS-2. AHf -24.60
kcal/mol (Figure 2), large enough to control the process for producing a single diastereomer.
Actually the regiochemistry of the nitrone intramolecular dipolar cycloaddition reaction is complicated
by a complex interplay of factor, such as alkene polarity, ring strain and other nonbonded interactions
(7). In the similar works of Grigg (15) and Padwa (4, 7) a significant loss of regioselectivity was
observed. Many groups (16-18) have investigated the basic rule and nature of 1,3-dipolar
cycloaddition and their results were in good agreement with the concerted mechanism. In present
study, the interatomic distances of involved atoms at TS-1 were 2.061A for C-O and 2.065A for
C-C and their difference is 0.004A, which agreed the concerted pathway.
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structure and the stereochemistry
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24.79(CH,;), 27.41(CH), 30.55(CH), 35.04(CH,), 43.69(CH,), 43.79(CH,), 46.31(CH,).
48.43(CH,), 53.55(CH), 71.52(C), 90.71(CH). HRMS (FAB), m/z, (M+1): calcd for
C,,H,(NO,S 288.1633, found 288.1642.
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